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Effect of finite boundaries on the Stokes resistance 
of an arbitrary particle 

Part 2. Asymmetrical orientations 

By HOWARD BRENNER 
Department of Chemical Engineering, New York University, New York 83, N.Y. 

(Received 13 March 1963 and in revised forin 2 August 1963) 

A general treatment is given of the first-order effects of wall proximity on the 
increased resistance to translational motions of a rigid particle of arbitrary shape 
settling in the Stokes rkgime. The analysis generalizes a previous treatment 
(Brenner 1962) to the case where the principal axes of resistance of the particle 
may have any orientation relative to the principal axes of the bounding walls. 
It is shown that, to the first order in the ratio of particle-to-boundary dimensions, 
the increased resistance of the particle can be represented by a symmetric, 
second-rank tensor (dyadic) whose value is independent of particle shape and 
orientation. 

1. Introduction 
The motivation for the present work stems, in part, from the fact that the 

motion of an anisotropic particle settling through an unbounded fluid at small 
Reynolds numbers is not generally parallel to the gravity field (Brenner 1963); 
however, as is well known, the quantitative behaviour of particles settling in the 
Stokes regime is profoundly influenced by wall effects. To test experimentally 
the predicted behaviour of anisotropic bodies one must therefore know the 
appropriate wall corrections for the case of asymmetric particle motions relative 
to the container boundaries. The present paper furnishes a general treatment of 
this subject to the first order in c/l (c = characteristic particle dimension, 
1 = characteristic boundary dimension) for particles and boundaries of any 
shape. A knowledge of the wall effects to this order usually suffices in most 
experimental investigations. 

By replacing the 'walls' by a second particle, the techniques developed in the 
above context are also used to treat the first-order interaction of two particles of 
arbitrary shape settling through an otherwise unbounded fluid. 

The central relation developed herein is a natural generalization of one given 
previously (Brenner 1963, hereafter referred to as Part 1) for symmetrical 
motions. In particular we shall show that if F be the hydrodynamic vector force 
on a rigid particle of any shape moving with vector velocity U through a bounded 
fluid, then, to the first order in cll, 

F = - ~~T,uc[$,' - kc/l+ o(c/Z)]-'. U, (1.1) 
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where p is the viscosity and (P, and k are dimensionless, symmetric dyadics, 
whichnow appearin place oftheir scalar counterpartsin Part 1. The superscript - 1 
denotes areciprocal (inverse) dyadic. The characteristic dimensions c and 1 may be 
chosen arbitrarily as alterations in their definitionsproduce corresponding changes 
in the definitions of +, and k, respectively, in such a way that the overall result is 
unaffected. As in the case of its scalar counterpart in Part 1, the advantage of 
equation (1.1) resides in the fact that it  separates the wall correction into distinct 
contributions from the particle ((P,) and boundary (k). 

I 
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FIGURE 1. Principal axes of the wall-effect tensor in the interior of a circular cylinder. 

The symmetric dyadic (P, is termed the Stokes resistance tensor of the particle 
(Brenner 1963). It is defined by the relation 

F, = - ~ T ~ , u c ( P , .  U, (1.2) 

where F, denotes the force which the body would experience if it  moved through 
the unbounded fluid with velocity U. It is an intrinsic and invariant property of 
the particle, dependent solely on the shape of the latter. In  particular, (Pm is 
independent of such factors as the size, velocity and orientation of the particle 
and of the properties of the fluid through which it moves. 

We shall refer to k as the wall-effect tensor. It is an intrinsic property of the 
shape of the bounding walls and of the relative location of the ‘centre’ of the 
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particle with respect to these boundaries. It is independent of such factors as 
the shape, size, orientation and velocity of the particle, the properties of the fluid, 
and size of the boundaries. As k is symmetric, it  follows that at  every point of a 
bounded fluid there exist a set of three mutually perpendicular axes such that if 
an isotropic particle, e.g. a sphere (whose centre coincides with this point) moves 
parallel to one of these axes, the force on the particle will be parallel to its direction 
of motion through the fluid. 

To illustrate the general properties of this wall-effect tensor consider, for 
example, some point 0 within the interior of a circular cylinder of radius I filled 
to a finite depth with viscous fluid as in figure 1. The distance from the axis to 
0 is b. The free surface and rigid cylinder base are Iocated at distances h, and h,, 
respectively, from 0. If (EJ, q5, z )  are circular cylindrical co-ordinates having their 
origin at  the axis and (im, i+, i,) are the corresponding unit vectors at 0, it is clear 
from symmetry considerations that the principal axes of k at 0 parallel to these 
vectors. Thus, we may write 

k = i ~ i ~ k , + i ~ i ~ k + + i * i * k ~ ,  

where the three scalars, k,, k, and IC,,  are the principal values of k a t  0. They are 
each functions of the dimensionless distances bll, h,/l and h&. 

2. Formulation of the problem 
Consider a rigid particle P settling with instantaneous velocity U in an other- 

wise quiescent fluid near some rigid boundary (or boundaries) S. The equations 
of motion and boundary conditions are:? 

v2v = p v p ,  
v .v  = 0,  

v = U on P, 
v =  0 on S, 
v+O as r+m. ( 2 . 5 )  

One should, in general, allow in (2.3) for the possibility that the particle may 
also be rotating with some instantaneous angular velocity o as it translates 
through the fluid; however, as discussed in Q 7, particle rotation does not affect 
the validity of (1 .1)  to the first order in c / l .  

In  Stokes flow the hydrodynamic force F exerted on a rigid particle moving 
with velocity U through a bounded fluid can be expressed in the general form 

F = -6n,~c#.U, (2 .6)  

where t$ is a (dimensionless) symmetric dyadic which is independent of the fluid 
properties and of the magnitude and direction of U. It does, however, depend 
on all the other geometric aspects of the flow-namely, the sizes and shapes of 
P and S, the location of the centre of P relatiye to S and the orientation of 

t Though unsymmetrical motions of the type under consideration are inherently un- 
steady, we have assumed that the local acceleration terms in the equations of motion may 
be neglected. 



Finite bounduries and Stokes resistance of un urbitrury particle 147 

P relative to S. The proof of (2.6) and of the symmetry of + is substantially 
identical to that given for the analogous equation (1.2) for an unbounded fluid 
(Brenner 1963). The necessary modifications of the latter proof, arising from the 
presence of the boundaries S ,  are trivial since v vanishes identically on S. 

The dependence of + on the geometrical configuration of the (P ,  8)-system is 
very complex in the general case. We now show, however, that to the first order 
in ell, + may be resolved into separate contributions from P and 8, as indicated 
in (1 .1) .  As in Part 1, we utilize the ‘method of reflexions’. 

3. Method of reflexions 
To solve the boundary-value problem posed by (2.1)-(2.5) we write 

(3.1) 

(3.2) 

Each reflexion, ( ~ ( n ) ,  #’a)), is to satisfy the governing differential equations, (2.1) 
and (2.2). The boundary conditions (2.3)-(2.5) may be satisfied to any degree of 
approximation in cI1 by successive application of the following boundary condi- 
tions to the individual reflexions : 

v(l) = U on P, (3.3) 

~ ( 2 )  = -v(1) on 8, (3-4) 

~ ( 3 )  = -v@) on p, (3.5) 
v(4) = -v(3) on S, etc. 

@-tO as r +  00. 

Also, for n = 1 , 2 , 3 ,  . . ., 

If F be the force exerted by the fluid on the particle, then (Part 1) 

F = F(l) + F(3) + F(6) + . . . , (3.8) 

where F(n) denotes the force on the particle associated with the nth reflexion. 
The initial field (~ ( l ) ,  @)), satisfying the boundary conditions (3.3) and (3.7)) 

corresponds to the motion of the particle through the unbounded fluid with 
velocity U, the principal axes of the particle having the same orientation relative 
to U as in the bounded case. Hence, F(l) = F, where F, is given by (1.2). A t  
large distances from any particle the asymptotic form of the initial field is (Part 1 , 
(2.15)-(2.16)) 

(3.9) 

(3.10) 

where I is the idemfactor and r is the position vector of a point in the fluid relative 
to an origin at the ‘centre’ of the particle. The terms displayed explicitly in the 
above are the same as would arise in the unbounded fluid from the action of a 
point force of strength F, situated at  the origin. 

10-2 
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Since r = O(Z) on 8, it follows from (3.4) and (3.9) that the boundary condition 
to be satisfied by v@) on S is of the form 

where 

(3.11) 

(3.12) 

in which r, = (z,, y,, zs) refers to a point on S. The dimensionless, variable 
dyadic A, is of O( 1) with respect to the parameter cIZ. It is clear that, at any point 
on S ,  A, depends only upon the location of the centre of P relative to S and upon 
the geometrical shape of the latter. It is independent of the size of S. 

In  Stokes flow, F, = O(6npcU). Thus, the boundary conditions (3.7) and (3.11) 
uniquely define v ( ~ )  to O(c/Z) for any given 1.9. It follows that, to this order, v(s 

(3.13) 

where A = A(x/Z, y/Z, z/Z) is a dimensionless, variable dyadic of O( 1) which reduces 
to As on S. Thus, at  any point in the fluid, it  too depends only upon the location 
of the centre of P relative to S and upon the shape of the latter. 

Now (see (2.19)) Part I),  the force F(3) arising from (v(~), ~ ( ~ 1 )  is, in our present 
notation, F(3) = 6npc+, . ~ 9 )  + o(c/Z), (3.14) 

where vg) refers to the value of v ( ~ )  at the centre of the space presently occupied 
by the particle. But, from (3.13)) we have 

vg)= k,-+o - , 
6npl Fm (P) (3.15) 

where k denotes the value of A a t  the centre of the particle, (z = 0,  y = 0,  z = 0) .  
k is therefore a dimensionless dyadic of O( l), dependent only upon the relative 
location of the centre of P with respect to S and upon the shape of the latter. We 
shall show subsequently that k is symmetric. 

Upon combining (3.14) and (3.15) we obtain 

W3) = c $ ~ .  k . F,(c/Z) + o(c/Z). (3.16) 

Though g5m and k are symmetric, their product is not generally symmetric and one 
must be careful to preserve the proper order of these dyadics in the multiplication. 

Higher-order reflexions may be obtained as outlined in Part 1. One thereby 
obtains for m = 0 , 1 , 2 ,  . . . 

(3.17) 

If we now substitute (3.17) into (3.8) and sum the resulting geometric series, 

F = [I - +a. k(c/Z) + o(c/Z)]-'. F,. (3.18) 

WBmf1) = (& . kc/Z)m. F, + o(c/Z)". 

we obtaint 

-f This is the analogue of the corresponding scalar relation 

given in Part 1. 
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If F, is eliminated from this expression via (1.2) we obtain equation (1.1)) which 
constitutes our main result. 

The proof that the k is symmetric now follows readily. From (1.1) and (2.6) 
we find that 

Thus, as g5 and $m are known to be symmetric the same must be true of k. 
Because of the appearance of the surface integral j l d S . n . v  (dS = directed 

element of surface area parallel to the normal, n, a t  the surface; II = pressure 
tensor) in the reciprocal theorem employed in the derivation of (2.6) and (3.14), 
it follows that (1.1) is equally valid in the important case where one of the 
boundaries comprising S is a planar free surface, e.g. the upper surface of the 
liquid in a circular cylinder. For in this case the vanishing of the tangential 
stresses implies that dS . II is parallel to n. This, in conjunction with the vanishing 
of the normal velocity, n. v, at the planar free surface causes the surface integral 
to  vanish. One thereby formally obtains the same result as if the vector velocity 
v were itself zero on the surface, as heretofore assumed in the analysis. Since 
boundary conditions of the type (3.4)) (3.6), etc., must be altered for afree surface, 
it is clear that the k value will be different for a free surface than a rigid surface. 

$-I = $00' - k(c/l) + o(c/Z). 

4. Applications to a settling particle 
For applications involving settling particles the hydrodynamic force F is 

known u priori (providing that we neglect the inertial force on the particle 
resulting from its linear acceleration) and its instantaneous velocity U is sought. 
Solving (1.1) explicitly for this velocity we obtain 

where (4.2) 

denotes the velocity with which the particle would settle (for the same orienta- 
tion) in an unbounded fluid. To compute F let g be the local acceleration of gravity 
vector, directed vertically downward, and let m2, and mj,  respectively, be the 
mass of the particle and displaced fluid. Thus (upon neglecting the inertial force 
on the particle mass) the gravitational, hydrostatic and hydrodynamic forces on 
the particle are in equilibrium. The constant hydrodynamic force on the particle 

(4.3) 
is, therefore, 

Equations (4.1)-(4.3) show that even an isotropic particle will not generally 
settle vertically in a bounded fluid unless one of the principal axes of k lies paraIlel 
to the Earth's gravity field. 

As a simple example of the application of (4.1) consider the motion of a thin, 
homogeneous, circular disk of thickness b and radius c (c @- b) falling under the 
influence of gravity in a semi-infinite viscous fluid bounded below by an infinitely 
extended, rigid, plane wall as in figure 2. The instantaneous position of the centre 
of the disk from the wall is 1. We let xj, Xj and Zi (j = 1,2,3) be co-ordinates fixed 

F = - ( W b p - m f ) g .  
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in space, fixed in the disk, and fixed in the wall, respectively. The x1 co-ordinate 
is directed towards the centre of the Earth and the x2 co-ordinate is parallel to 
the surface of the Earth. The ‘3’ co-ordinates are all directed out of the plane of 
the paper. Unit vectors in the three different co-ordinate systems are denoted by 
ij, ij and ij. The angles made by the plane of the disk and wall, respectively, with 
the horizontal are denoted by [ and 7. We propose to calculate the components 
of the instantaneous settling velocity of the disk in the xj system. 

Circular C 

Horizontal 

x2 

Direction of 
gravity, g 

Fluid 

wall 

FIGURE 2. Circular disk settling asymmetrically near an inclined plane wall. 

It is clear from symmetry that the principal axes of g5, lie parallel to the 
Zj-axes. The Stokes force experienced by a circular disk moving broadside-on 
with velocity U in an unbounded medium is F, = - l6pcU (Lamb 1932). The 
corresponding expression for edge-on motion is F, = - (32/3)pcU. Hence, from 
(1.2), we obtain 

(4.41 

It also follows from symmetry that the principal axes of k are everywhere parallel 
to the Zj-axes. Hence, from equations (3.4) and (3.6) of Part 1, we find thatt  

g5, = (8/97r) (il i 1 3  + i, i,2 + i, i, 2). 

k = +~(11i12+92i2+13i3).  (4.6) 

t The comparable expression for a free plane surface is (see Part 1, (3.5) and (3 .7) )  

k = #(Tlil 2-i2i2-i8TJ. 

The plane surface, either free or rigid, appears to be the only boundary for which k has the 
same value at all points of the fluid. 
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We also note that g = i, g. Since mp - mf = nccbAp (Ap = difference in density of 
disk and fluid), a straightforward calculation yields U, = 0 and 

The only other boundary and position for which the wall-effect tensor is 
completely known is at  the centre of a hollow sphere filled with viscous liquid. It is 
self-evident that k must be isotropic for this situation. Hence, if I is the radius of 
the hollow sphere, we find from equation (3.3) of Part 1 that 

k = If. (4.7) 

5. Moving boundary or net flow at infinity 
Equation (1.1) is applicable only to the case where the boundary AS is at  rest 

and the fluid at infinity is at  rest. It is of some interest to modify (1.1) so as to 
remove these restrictions. The case in which S is in motion arises, for example, 
when S is itself a particle falling in proximity to  the original particle P. The case 
in which a net flow occurs at infinity arises, for example, during Poiseuille flow 
through a circular tube containing a particle. Problems of the latter type are of 
interest in connexion with the observed radial migration of particles in Poiseuille 
flow (Segr6 & Silberberg 1962; Goldsmith & Mason 1962). 

In  the event that either S moves or the fluid at  infinity is in net flow, let 
(v(O),p(O)) denote the local velocity and pressure fields which would arise from 
either of these motions if P were absent from the fluid. It is assumed that these 
fields satisfy (2.1) and (2.2). To (3.1) and (3.2), respectively, we now add these 
initial fields (v(O),p(O)). Among the boundary conditions (3.3)-(3.7), only (3.3) 
requires modification. In  its stead the proper boundary condition is now 

~ ( 1 )  = U - ~ ( 0 )  on p. (5.1) 

(5.3) 

The initial field v(0) can be expanded in a Taylor series about the centre of P 
v(0) = v y  + o(c/Z), 

where v'p") denotes the value of v(0) at the centre of the space presently occupied by 
the particle. Thus, in place of (5.1), v(l) is now uniquely defined to the first order 
in cI1 by the relation 

v(l) = U - ~ $ 9  + o(c/l) on P. 

Upon repeating the analysis which led to (l.l),  we now find that the force on the 
particle is given correctly to the first order by the expression 

(5.3) 

F = - 67~;~~[+j,'-  k(c/Z) + O ( C / ~ ) ] - ' .  [U - vP' + o ( c / ~ ) ] ,  (5.4) 

where k has the same value as previously, i.e. in the case where v(O) was identically 
zero. 

Equation (5.4) in conjunction with (4.3) yields the instantaneous particle 
velocity 
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This relation shows that a particle will undergo radial movement whenever no 
one of its three principal axes of resistance lies parallel to the Earth’s gravitational 
field, whether the fluid is in Poiseuille flowt or is stagnant, and that, judgingfrom 
the experiments of Goldsmith & Mason (1962), the shear distorts the particle so 
that its shape and orientation will allow such migration. 

6. The motion of two particles through an unbounded fluid 
Consider the motion of two particles (Pl and P2) of arbitrary shape settling with 

any relative orientations through an unbounded fluid. It is assumed that the 
characteristic particle dimensions (cl and c2) are both small compared with their 
centre-to-centre spacing, 1. The particles move with instantaneous velocities U, 
and U,, respectively. The analysis which follows is a generalization of previous 
work on spherical particles (cf. Kynch 1959). The ability to bring the more general 
problem to fruition depends on the observation that the ‘wall-effect’ tensor, k, 
which appears in (1 .1)  must somehow be related to the Stokes resistance tensor 
for the second particle and to the relative positions of the centres of Pl and P2. 

For definiteness, we identify PI with the symbol P used earlier and P2 with S. 
The boundary conditions are v = Uj on Ij .  ( j  = 1,2)  and v + 0 as rl, r2 --f co. 
Here, rj denotes the position vector of a point relative to an origin at  the centre of 
4.. To solve this problem we utilize the modified reflexion scheme outlined in 
0 5 with U now replaced by U,. The initial field (v(O),p(O)) is to satisfy the boundary 
conditions 

Then, from (5.4)) the force on P, is, to at least O(cj/Z), 

Fl = - 6T%[(+d11- k, (c1/l)Ir1 * (U1- v$$ (6.2) 

where denotes the Stokes resistance tensor for Ij., and kj is the ‘wall-effect ’ 
tensor arising from the presence of the ‘ boundary ’ Pj in the fluid; kj is a property 
only of the shape of q and of the relative location of the centre of the other 
particle with respect to the centre of 4. 

The asymptotic form of the initial field created by the mot’ion of P, through 
the unbounded fluid in the absence of Pl is, to O(c2/ l ) ,  

where (FCJ2 = - 6WC2(+,)2. u2 (6.4) 

denotes the force on P, in an infinite medium from which PI is absent. Now, let 
E be a unit vector drawn along the line of centres. It is immaterial whether it is 
directed from Pl to P, or vice versa since E always appears in the dyad combination 
EE. A t  the centre of Pl, r2 = EZ; hence, from (6.3) and (6.4)) 

V$i = (3C2/41) (I + EE) . u,. (6.5) 

t Here, V$ = 2V[1-((b/Z)2] where V is the mean velocity of flow through the tube, 
b = distance of centre of particle from cylinder axis, I = tube radius. 
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As indicated in $5, to deduce the expression for k, it is sufficient to consider 
the case where P, moves with velocity U, while P, is a t  rest. Since v(l) for this 
special case satisfies the conditions v(l) = U, on P, and v(l) --f 0 as rl + co, the 
asvmntotic form of v(l) is 

At the centre of P, this has the value 

~(pll = - (I + EE) . (F,),/~T,u~. (6.7) 

But, by a relation analogous to (3.14), the force on P2 arising from the field 
(v(2),p(2)) (which satisfies the boundary condition v(,) = - v(l) on P2 and v(,) + 0 as 
r ,  + co) is 

where vgi is given in (6.7). By virtue of hhis force the asymptotic form of v(2) is 

(6.8) FL2) = 6 7 ~ , ~ ~ 2 ( $ ~ ) 2 .  v$:, 

Thus, from (6.7) to (6.9), we find that the value of v(,) at the centre of P, is 

(6.9) 

(6.10) 

Comparison with (3.15) shows that 

9 C  
k - >(I + EE). ( I  + EE). (6.11) - 161 

This dyadic is symmetric, in concordance with our general observation of the 
symmetry of k. 

Upon substituting (6.5) and (6.11) into (6.2) we obtain 

I --L F = - [($&1-- 9 c1c2 -- (I + €4. (#%),. ( I  + €4 . [ul- -- (I + E€). ($rn)2. u, , 3 c2 
6VCl 1 6 1  1 4 1  

-1 

(6.12) 

which constitutes the main result of this section. The corresponding force on p2 
may be obtained by permuting the indices. 

I n  most applications of interest, F, and F, are given and one desires to calculate 
the settling velocities U, and U,. This is readily done by simultaneously solving 
(6.12) and its counterpart for these velocities. As a simple example, let P, and P, 
be spheres of radii c, and c,, respectively. The dimensionless resistance tensors 
are now isotropic and have the values = ($rn)2 = I. Substitution in (6.12) 

1 3 c  
]-la[ 4 1 

yields 
-~ Fl = [1----(1+3€€)  9 C l C 2  U,----2(I+EE).U2 . 

6V% 1 6 1  1 

Now let V, be the Stokes-law velocity with which P, would settle under the 
influence of gravity in an infinite medium from which P, was absent. Then 
F, = - 6npc, V,, which relation we employ to  eliminate F, from the above. 
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A second relation of similar form is then obtained by permuting the indices. 
Upon solving the two resulting equations simultaneously for U, and U, with the 
aid of the identity 

we obtain, after considerable reduction, the expression 

3 c  
4 1  

u, = V,+---2(V2+EE.V2), 

= c2 

p ,  , 

Direction of 
gravity, g 

Horizontal ?7 X 

FIGURE 3. Two unequal spheres settling in a viscous fluid. 

with a comparable formula for U,. To express this result in component form, 
consider the situation depicted in figure 3. If i and j denote unit vectors in the 
R: and y directions, respectively, then V, = iF, V, = iV, and E = i sin 8 + j cos 8. 
In  this way we obtain 

(Ul)z = ~ + z f ~ ( l + s i n ~ O ) ,  

(U& = 

3 c  

3 c2 V, sin 8 cos 19, 

which agree to the first order in cj/l with corresponding expressions given by 
Kynch (1959, (3.8)) for spherical particles. 
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7. Discussion 
The aiialysis leading to (1.1) does not explicitly take account of the possible 

effects of particle rotation on the force experienced by the particle, P. Rotation 
of P may arise in either of two ways: first, rotation may occur even in the absence 
of boundaries, S, in consequence of any initial rotation given P at the start of its 
trajectory, or by the combined action of gravitational, hydrostatic and hydro- 
dynamic torques acting on a particle released from rest in an infinite fluid 
(Brenner 1963); secondly, even if the particle has no tendency to rotate in an 
infinite fluid i t  may do so in a bounded fluid as a consequence of wall effects. As 
the equations of motion are linear, the additional forces on P,  arising from 
rotation, may be treated separately from those due to translation and the results 
superposed. 

If P rotates with instantaneous angular velocity w as it settles, the boundary 
condition at  its surface is given byv = U + o x r, rather than (2.3). Without loss 
in generality, we let U be the instantaneous velocity of its ‘centre of hydro- 
dynamic stress’ C, (Brenner 1963) and measure r from this point. This choice is 
not arbitrary but derives from the fact that for combined rotational and trans- 
lational motions, equation (1.2) is valid only if U refers to the velocity of point C. 
Rotation about an axis through C yields no net force on the body, at least in an 
infinite medium, so that the hydrodynamic stresses set up at  the surface of a body 
rotating in this manner produce only a couple. 

Consider now the problem of finding the additional rotational field, (vrOt, pro& 
satisfying (2.1), (2.2), (2.4), (2.5) and vrot = w x r on P. The reflexion scheme 
outlined in (3.1)-(3.7) may be used to solve this problem, except that (3.3) is 
now replaced by viit = o x r on P. The initial field, ( v $ ~ ~ , p ~ ~ ~ ) ,  corresponds to 
the rotation of P about C in the unbounded fluid. As P experiences no net force 
due to its rotation in an unbounded fluid (i.e. F$ii = 0), the fluid motion at 
great distances from it is asymptotically the same as would arise from the action 
of a ‘point couple’ equal in strength to the actual couple and situated at  C. Thus, 
(Brenner 1963) 

v;;’t = -___ + r - + o (:) , 8npr3 2p (7.1) 
Lmxr  p m  

where L, denotes the couple which the body experiences when it rotates about 
an axis through C with angular velocity o in the unbounded fluid, and p ,  = &,\ 
denotes the pressure fieldt arising from this rotation. The latter is a solid spherical 
harmonic of order - 2. 

In general, L, = 0(8npc3w) and p ,  = 0(4npc3o/r3) (see for example, the 
solutions of Edwardes 1892 and Jeffery 1933 for a rotating ellipsoid), so that 

t It was mistakenly assumed in Part 1 that p m  = 0 for an arbitrary particle. This is true 
only for an axisymmetric particle rotating about its symmetry axis. Thus, equation (5.9) 
of Part 1 does not apply to bodies of arbitrary shape as originally stated, but only to axisym- 
metric bodies rotating about their symmetry axes. Moreover, the boundary shape and the 
direction of particle rotation relative to this boundary must be such that the streamlines 
in the bounded fluid lie in circles concentric with the particle axis. That these additional 
restrictions are necessary for the applicability of (6.9) has been confirmed by examining in 
detail the solution for an ellipsoid rotating about a principal axis, perpendicular to a plane 
wall. 
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v$i\ = O(c/r)2. Since r = O(Z) on 8, we find by arguments similar to those em- 
ployed in § 3 that the reflexion of viik from S has, at  the centre of P, the value 
(vR), = O(C/Z)~. Hence, from (3.14), the force, F$;L, on P arising from (v$tk,pitk) 
is of O(c/Z)2. But a term of this order is negligible in our first-order force theory 
and may be neglected.? It follows that (1.1) (as well as (5.4) and (6.13)) are 
applicable even in the presence of rotation providing that U in these relations is 
interpreted as the velocity of the centre of hydrodynamic stress. 

One should not infer from the preceding discussion that rotation, if it  occurs, 
is without significant effect on the translational motion of the particle. A rotating, 
anisotropic particle falling under the influence of gravity will continuously suffer 
changes in its instantaneous velocity, U, owing to concomitant changes in the 
orientation of the particle relative to the direction of the gravity field. For this 
reason it is desirable to estimate the order-of-magnitude of the angular velocity 
of a particle which rotates solely in response to wall effects. This is the case most 
usually encountered in practice. (A homogeneous ellipsoidal particle, for example, 
has no tendency to rotate in the absence of boundaries.) 

The couple on a particle trunslating through a bounded fluid may be estimated 
from equation (5.7) of Part 1. Though this relation is not quantitatively accurate 
in the absence of a host of symmetry restrictions, it  does furnish the proper orders- 
of-magnitude in the general case. Thus, in our present notation, the couple is (to 
dominant terms in c/Z) 

But, from (3.13) me have 
L = 0[87rpc3(V x vgnSJp]. 

Taking the curl of this equation and evaluating the resultant expression at  the 
centre of the particle (x = 0,  y = 0, x = 0) ,  we find that 

L = 0(87rpc*U/P). 

But, to dominant terms in c/l, the relationship between the couple on a particle 
and its angular velocity is of the general form 

L = O(87rpc30). 

oc/u = O(C/Z)2. 

Upon equating these we obtain1 
(7.2) 

This estimate is confirmed by the detailed calculations of Wakiya (1959) for the 
translational motion of an ellipsoid near a vertical, plane wall. 

A slightly more detailed calculation with the aid of (3.16) shows that 

(E:iia2nd) = O[(WC/U) ( C i 4 1 .  
If particle rotation occurs solely via wall effects (as is usually the case) then, as shown in the 
sequel, wc/U is a t  least of O ( C / ~ ) ~ .  Thus, the error incurred by neglecting the ‘rotational’ 
forces on the particle in this case is even smaller than would otherwise be expected. 

8 Because of their symmetry, spherical particles constitute a degenerate case and produce 
much smaller effects, as evidenced by the detailed calculations of Faxen (1923) for the 
translational motion of a sphere parallel to a vertical, plane wall, where it is shown that 
oc/u = o ( C / 1 ) 4 .  
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Equation (7.2) shows that the relative rate of rotation can normally be expected 
to be fairly small in the range of c/l values to which (1.1) is applicable. 

The range of c / l  values for which equation (1 .1)  and its generalizations are 
accurate is surprisingly large for a first-order theory. For example, in the case of 
a spherical particle of radius c falling axially at the centre of a circular cylinder 
of radius I ,  equation (1.1) yields 

where k = 2.1044 (Part 1, (3.2)). Values of F/GnpcU computed from this approxi- 
mate formula are compared below in table 1 with the ‘exact’ values given by 
Haberrnan & Sayre (1958). 

C I 1  Exact Approximate 
0 1.000 1.000 
0.1 1.263 1.266 
0.2 1.680 1.727 
0.3 2.712 2.371 

TABLE 1. Stokes-law wall-correction factor for a sphere in a circular cylinder 

PI6npcU 

hlc 
co 

10.07 
6.132 
3.762 
2.352 
1.543 
1.128 
1.000 

Exact 
1~0000 
0.9308 
0.8916 
0.836 
0.768 
0.702 
0.660 
0.645 

Approximate 
1~0000 
0.9307 
0.8910 
0.834 
0.758 
0.673 
0.601 
0.571 

TABLE 2.  Stokes-law correction factor for two spheres in an unbounded fluid 

In a similar vein, for the motion of two equal spheres of radii c moving with equal 
velocities parallel to their line-of-centres through an otherwise unbounded fluid, 
equation (6.13) gives, for the force on either sphere, 

where 2h = 1 is the centre-to-centre distance. Values computed from this approxi- 
mate formula are compared in table 2 with the exact values of Stimson & Jeffery 
(1926). 
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